Properties

Label 1119744.bp
Order \( 2^{9} \cdot 3^{7} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \)
Perm deg. $30$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30), (1,4,10,11,8,13)(2,5,12,17,16,18,15,7,14,6,3,9)(19,22)(20,24,21,25,29,23,28,30)(26,27), (1,2,5,11,10,16,6,4,8,14,18,13)(3,7)(9,15)(12,17)(19,20,23,27)(21,25)(22,26,29,24)(28,30) >;
 
Copy content gap:G := Group( (1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30), (1,4,10,11,8,13)(2,5,12,17,16,18,15,7,14,6,3,9)(19,22)(20,24,21,25,29,23,28,30)(26,27), (1,2,5,11,10,16,6,4,8,14,18,13)(3,7)(9,15)(12,17)(19,20,23,27)(21,25)(22,26,29,24)(28,30) );
 
Copy content sage:G = PermutationGroup(['(1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30)', '(1,4,10,11,8,13)(2,5,12,17,16,18,15,7,14,6,3,9)(19,22)(20,24,21,25,29,23,28,30)(26,27)', '(1,2,5,11,10,16,6,4,8,14,18,13)(3,7)(9,15)(12,17)(19,20,23,27)(21,25)(22,26,29,24)(28,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38807395770553377342179167904501705073424572393860877933111148056755358410061605558974246642885289916703616024059912880926721367902241567199263672373993940171397321596181856266937169333726410250861773904110985810328302385382137515100190206079033648367425170419188595724562965928500184833589335950588815901552178915804573141274807205203521025795950075846085482282083066638028847178525077918562532011844619273805342987994606739353976626585611470810224672433013567249562382450412069409492049294639664928085,1119744)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15;
 

Group information

Description:$C_6^4.(C_6^2:C_4\times S_3)$
Order: \(1119744\)\(\medspace = 2^{9} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 20799 6722 77760 239454 62208 12960 412128 69984 217728 1119744
Conjugacy classes   1 25 17 22 392 8 4 127 48 20 664
Divisions 1 25 17 18 388 4 4 117 36 10 620
Autjugacy classes 1 18 13 10 172 2 2 37 10 3 268

Minimal presentations

Permutation degree:$30$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid c^{6}=d^{6}=e^{6}=f^{6}=g^{6}=h^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 32, 2018321, 29312066, 2042994, 130, 52460547, 12608019, 580659, 66247364, 5476820, 15872196, 6774052, 228, 77692421, 42001941, 13445029, 7541, 106444806, 49004950, 4656358, 2327894, 326, 95993863, 28016663, 4666439, 2332503, 126823112, 32285976, 20062120, 6423032, 29448, 1315960, 424, 83589129, 71331865, 35665961, 10437177, 25033, 2904089, 64500490, 79263386, 6842922, 13571770, 4299050, 20682, 522, 97929227, 43960347, 5972011, 1990715, 165963, 177705228, 109669276, 37469996, 673980, 6203884, 136748, 620, 88768525, 86317085, 7547949, 580669, 1161293, 72230414, 76152990, 56194606, 19025342, 3739758, 5308654, 718, 98353167, 19021855, 47886383, 4755519, 7968847, 4325471]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2"]);
 
Copy content gap:G := PcGroupCode(38807395770553377342179167904501705073424572393860877933111148056755358410061605558974246642885289916703616024059912880926721367902241567199263672373993940171397321596181856266937169333726410250861773904110985810328302385382137515100190206079033648367425170419188595724562965928500184833589335950588815901552178915804573141274807205203521025795950075846085482282083066638028847178525077918562532011844619273805342987994606739353976626585611470810224672433013567249562382450412069409492049294639664928085,1119744); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38807395770553377342179167904501705073424572393860877933111148056755358410061605558974246642885289916703616024059912880926721367902241567199263672373993940171397321596181856266937169333726410250861773904110985810328302385382137515100190206079033648367425170419188595724562965928500184833589335950588815901552178915804573141274807205203521025795950075846085482282083066638028847178525077918562532011844619273805342987994606739353976626585611470810224672433013567249562382450412069409492049294639664928085,1119744)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38807395770553377342179167904501705073424572393860877933111148056755358410061605558974246642885289916703616024059912880926721367902241567199263672373993940171397321596181856266937169333726410250861773904110985810328302385382137515100190206079033648367425170419188595724562965928500184833589335950588815901552178915804573141274807205203521025795950075846085482282083066638028847178525077918562532011844619273805342987994606739353976626585611470810224672433013567249562382450412069409492049294639664928085,1119744)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15;
 
Permutation group:Degree $30$ $\langle(1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30), (1,4,10,11,8,13)(2,5,12,17,16,18,15,7,14,6,3,9)(19,22)(20,24,21,25,29,23,28,30)(26,27), (1,2,5,11,10,16,6,4,8,14,18,13)(3,7)(9,15)(12,17)(19,20,23,27)(21,25)(22,26,29,24)(28,30) >;
 
Copy content gap:G := Group( (1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30), (1,4,10,11,8,13)(2,5,12,17,16,18,15,7,14,6,3,9)(19,22)(20,24,21,25,29,23,28,30)(26,27), (1,2,5,11,10,16,6,4,8,14,18,13)(3,7)(9,15)(12,17)(19,20,23,27)(21,25)(22,26,29,24)(28,30) );
 
Copy content sage:G = PermutationGroup(['(1,3,8,12,10,15)(2,6,13,17,14,18,4,9,16,5,11,7)(19,21,26,28)(20,23,22,25,29,24,27,30)', '(1,4,10,11,8,13)(2,5,12,17,16,18,15,7,14,6,3,9)(19,22)(20,24,21,25,29,23,28,30)(26,27)', '(1,2,5,11,10,16,6,4,8,14,18,13)(3,7)(9,15)(12,17)(19,20,23,27)(21,25)(22,26,29,24)(28,30)'])
 
Transitive group: 36T36525 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_6^5$ . $(C_6^2:C_4)$ $(C_6^4.C_6^2:C_4)$ . $S_3$ $C_6^4$ . $(C_6^2:C_4\times S_3)$ $C_3^4$ . $(A_4^2:D_6.D_4)$ all 58

Elements of the group are displayed as permutations of degree 30.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 95 normal subgroups (69 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_3^4.(A_4^2:C_4\times D_6)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_6^4.C_3^3.C_2$ $G/G' \simeq$ $C_2^2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^3\times C_6$ $G/\Phi \simeq$ $A_4^2:C_4\times D_6$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2\times C_6^5$ $G/\operatorname{Fit} \simeq$ $C_2\times C_3^2:C_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_6^4.(C_6^2:C_4\times S_3)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^3\times C_6^2$ $G/\operatorname{soc} \simeq$ $C_3^4:(C_4\times D_6)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7:C_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^3$

Subgroup diagram and profile

Series

Derived series $C_6^4.(C_6^2:C_4\times S_3)$ $\rhd$ $C_6^4.C_3^3.C_2$ $\rhd$ $C_6^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_6^4.(C_6^2:C_4\times S_3)$ $\rhd$ $C_6^4.C_3^3.C_2^4$ $\rhd$ $C_6^4.C_3^3.C_2^3$ $\rhd$ $(C_2\times C_6^3).C_3^3.C_6.C_2$ $\rhd$ $C_6^4.C_3^3.C_2$ $\rhd$ $C_6^4.C_3^3$ $\rhd$ $C_3\times C_6^4$ $\rhd$ $C_6^4$ $\rhd$ $C_3^4$ $\rhd$ $C_3^2$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_6^4.(C_6^2:C_4\times S_3)$ $\rhd$ $C_6^4.C_3^3.C_2$ $\rhd$ $C_6^4.C_3^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $664 \times 664$ character table is not available for this group.

Rational character table

The $620 \times 620$ rational character table is not available for this group.