Properties

Label 1119744.bp.6.B
Order $ 2^{8} \cdot 3^{6} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: not computed
Generators: $\langle(5,18)(7,17)(8,10)(11,13)(12,15)(14,16)(19,26), (3,4)(5,17)(6,9)(7,18)(11,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^4.(C_6^2:C_4\times S_3)$
Order: \(1119744\)\(\medspace = 2^{9} \cdot 3^{7} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_3^4:(C_2\times A_4^2:C_4)$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.(C_2\times C_6^2:C_4)$
Normal closure:$C_6^4.C_3^3.C_2^4$
Core:$C_6^4.C_6^2.C_2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4.(A_4^2:C_4\times D_6)$