Properties

Label 111168.a.192.b1.b1
Order $ 3 \cdot 193 $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_3$
Order: \(579\)\(\medspace = 3 \cdot 193 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(579\)\(\medspace = 3 \cdot 193 \)
Generators: $a^{64}b, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_3\times F_{193}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{192}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Automorphism Group: $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^2$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times F_{193}$
Complements:$C_{192}$ $C_{192}$ $C_{192}$
Minimal over-subgroups:$C_{579}:C_3$$C_{193}:C_6$
Maximal under-subgroups:$C_{193}$$C_3$
Autjugate subgroups:111168.a.192.b1.a1111168.a.192.b1.c1

Other information

Möbius function$0$
Projective image$C_3\times F_{193}$