Properties

Label 110592.cy.12.I
Order $ 2^{10} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.(A_4\times S_4)$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(11,12)(13,14)(15,16)(17,18)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34), (13,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^2.C_2\wr D_6$
Order: \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^8.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $D_5^3:C_4$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$W$$C_2^8.(C_6\times S_3^2)$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2.C_2\wr D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^8.(C_6\times S_3^2)$