Properties

Label 110592.a.3.a1
Order $ 2^{12} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5.S_4\wr C_2$
Order: \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(2,4)(6,7)(10,12)(13,15), (9,11)(10,12), (9,10)(11,12), (1,3)(2,4)(9,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(C_2^2:S_4)^2.D_6$
Order: \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2:S_4)^2.D_6$, of order \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^6.S_4\wr C_2$, of order \(73728\)\(\medspace = 2^{13} \cdot 3^{2} \)
$W$$C_2^5.S_4\wr C_2$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_2^5.S_4\wr C_2$
Normal closure:$(C_2^2:S_4)^2.D_6$
Core:$C_2^8.\SOPlus(4,2)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(C_2^2:S_4)^2.D_6$