Properties

Label 11000.d.2.c1
Order $ 2^{2} \cdot 5^{3} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{55}:C_{20}$
Order: \(5500\)\(\medspace = 2^{2} \cdot 5^{3} \cdot 11 \)
Index: \(2\)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}b^{11}c^{8}, b^{10}, c^{2}, c^{5}, a^{2}, b^{22}c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{110}.C_{10}^2$
Order: \(11000\)\(\medspace = 2^{3} \cdot 5^{3} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{55}.(C_{20}\times D_5).C_2^4$
$\operatorname{Aut}(H)$ $C_{55}.(C_{20}\times D_5).C_2^3$
$W$$C_{110}:C_{10}$, of order \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{110}.C_{10}^2$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{110}.C_{10}^2$
Maximal under-subgroups:$C_{110}:C_5^2$$C_5:C_{220}$$C_{55}:C_{20}$$C_{220}:C_5$$C_5^2:C_{20}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{110}:C_{10}$