Properties

Label 11000.d.10.k1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{220}:C_5$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}b^{11}c^{8}, c^{2}, c^{5}, a^{2}, b^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $C_{110}.C_{10}^2$
Order: \(11000\)\(\medspace = 2^{3} \cdot 5^{3} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{55}.(C_{20}\times D_5).C_2^4$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$W$$C_{11}:C_{10}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{220}:C_{10}$
Normal closure:$C_5\times C_{55}:C_{20}$
Core:$C_{110}:C_5$
Minimal over-subgroups:$C_5\times C_{55}:C_{20}$$C_{220}:C_{10}$
Maximal under-subgroups:$C_{110}:C_5$$C_{220}$$C_{11}:C_{20}$$C_5\times C_{20}$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{110}:C_{10}$