Properties

Label 108811.1.233.a1.a1
Order $ 467 $
Index $ 233 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{467}$
Order: \(467\)
Index: \(233\)
Exponent: \(467\)
Generators: $b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), the socle, maximal, a semidirect factor, cyclic (hence abelian, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $467$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{467}:C_{233}$
Order: \(108811\)\(\medspace = 233 \cdot 467 \)
Exponent: \(108811\)\(\medspace = 233 \cdot 467 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 233$.

Quotient group ($Q$) structure

Description: $C_{233}$
Order: \(233\)
Exponent: \(233\)
Automorphism Group: $C_{232}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \)
Outer Automorphisms: $C_{232}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{467}$, of order \(217622\)\(\medspace = 2 \cdot 233 \cdot 467 \)
$\operatorname{Aut}(H)$ $C_{466}$, of order \(466\)\(\medspace = 2 \cdot 233 \)
$W$$C_{233}$, of order \(233\)

Related subgroups

Centralizer:$C_{467}$
Normalizer:$C_{467}:C_{233}$
Complements:$C_{233}$
Minimal over-subgroups:$C_{467}:C_{233}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-1$
Projective image$C_{467}:C_{233}$