Subgroup ($H$) information
Description: | $C_2\times C_{68}$ |
Order: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(68\)\(\medspace = 2^{2} \cdot 17 \) |
Generators: |
$a, b^{4}, b^{8}, c^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $\OD_{32}:C_{34}$ |
Order: | \(1088\)\(\medspace = 2^{6} \cdot 17 \) |
Exponent: | \(272\)\(\medspace = 2^{4} \cdot 17 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times C_8).C_2^5$ |
$\operatorname{Aut}(H)$ | $D_4\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \) |
$\operatorname{res}(S)$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2^2:C_4$ |