Subgroup ($H$) information
Description: | $\OD_{16}:C_{34}$ |
Order: | \(544\)\(\medspace = 2^{5} \cdot 17 \) |
Index: | \(2\) |
Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
Generators: |
$c^{2}, b^{4}, b^{8}, c^{17}, b^{2}, a$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $\OD_{32}:C_{34}$ |
Order: | \(1088\)\(\medspace = 2^{6} \cdot 17 \) |
Exponent: | \(272\)\(\medspace = 2^{4} \cdot 17 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^2\times C_8).C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2^2\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $(C_2\times C_8) . C_2^5$, of order \(512\)\(\medspace = 2^{9} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $D_4$ |