Properties

Label 1088.249.4.a2
Order $ 2^{4} \cdot 17 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}\times C_{17}$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $c^{2}, c^{4}, d^{2}, cd^{17}, a$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{136}.C_2^3$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3:A_4.C_8.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$\OD_{16}\times C_{17}$
Normalizer:$C_{136}.C_2^3$
Complements:$C_2^2$
Minimal over-subgroups:$\OD_{16}\times C_{34}$$\OD_{16}:C_{34}$
Maximal under-subgroups:$C_2\times C_{68}$$C_{136}$$\OD_{16}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$2$
Projective image$C_2^4$