Properties

Label 1088.154.8.i1.a1
Order $ 2^{3} \cdot 17 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times C_{17}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Generators: $ab, c^{102}, c^{68}, c^{8}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{136}.D_4$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_{16}\times S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$D_4\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{34}$
Normalizer:$Q_{16}\times C_{34}$
Normal closure:$Q_8\times C_{34}$
Core:$C_{68}$
Minimal over-subgroups:$Q_8\times C_{34}$$Q_{16}\times C_{17}$$Q_{16}\times C_{17}$
Maximal under-subgroups:$C_{68}$$C_{68}$$Q_8$
Autjugate subgroups:1088.154.8.i1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_4:D_4$