Properties

Label 1088.154.16.b1.a1
Order $ 2^{2} \cdot 17 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{68}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Generators: $c^{102}, c^{8}, c^{68}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{136}.D_4$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\OD_{16}:C_{34}$
Normalizer:$C_{136}.D_4$
Minimal over-subgroups:$C_2\times C_{68}$$C_{136}$$C_{136}$$C_2\times C_{68}$$Q_8\times C_{17}$$Q_8\times C_{17}$$C_{136}$
Maximal under-subgroups:$C_{34}$$C_4$

Other information

Möbius function$0$
Projective image$C_4:D_4$