Properties

Label 1088.1448.8.h1.a1
Order $ 2^{3} \cdot 17 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{136}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $ab^{2}, c^{2}, b^{8}, b^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{68}.C_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^2\times C_8).C_2^4)$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(136\)\(\medspace = 2^{3} \cdot 17 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{136}$
Normalizer:$C_8.D_{34}$
Normal closure:$\OD_{16}\times C_{17}$
Core:$C_{68}$
Minimal over-subgroups:$\OD_{16}\times C_{17}$$C_8\times D_{17}$$C_{136}:C_2$
Maximal under-subgroups:$C_{68}$$C_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{34}:C_4$