Properties

Label 1088.126.272.b1.e1
Order $ 2^{2} $
Index $ 2^{4} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $Q_8\times C_{136}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{136}$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Automorphism Group: $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
Outer Automorphisms: $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{16}\times C_2^4:C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1024\)\(\medspace = 2^{10} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_{136}$
Normalizer:$Q_8\times C_{136}$
Minimal over-subgroups:$C_{68}$$C_2\times C_4$$Q_8$$Q_8$
Maximal under-subgroups:$C_2$
Autjugate subgroups:1088.126.272.b1.a11088.126.272.b1.b11088.126.272.b1.c11088.126.272.b1.d11088.126.272.b1.f1

Other information

Möbius function$0$
Projective image$C_2^2\times C_{136}$