Properties

Label 1088.126.136.d1.b1
Order $ 2^{3} $
Index $ 2^{3} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab^{5}, c^{17}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $Q_8\times C_{136}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{136}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Automorphism Group: $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{16}\times C_2^4:C_3.C_2^3$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{136}$
Normalizer:$Q_8\times C_{136}$
Complements:$C_{136}$ $C_{136}$ $C_{136}$ $C_{136}$ $C_{136}$
Minimal over-subgroups:$Q_8\times C_{17}$$C_2\times Q_8$
Maximal under-subgroups:$C_4$$C_4$$C_4$
Autjugate subgroups:1088.126.136.d1.a11088.126.136.d1.c11088.126.136.d1.d1

Other information

Möbius function$0$
Projective image$C_2^2\times C_{136}$