Properties

Label 108450.a.241.a1
Order $ 2 \cdot 3^{2} \cdot 5^{2} $
Index $ 241 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}\times C_{30}$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Index: \(241\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{15}, b^{2410}, a^{6}, a^{20}, b^{723}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and metacyclic.

Ambient group ($G$) information

Description: $C_{3615}:C_{30}$
Order: \(108450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \cdot 241 \)
Exponent: \(7230\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 241 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{3615}.C_{120}.C_2^3.C_2$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}\times C_{30}$
Normalizer:$C_{15}\times C_{30}$
Normal closure:$C_{3615}:C_{30}$
Core:$C_{15}$
Minimal over-subgroups:$C_{3615}:C_{30}$
Maximal under-subgroups:$C_{15}^2$$C_5\times C_{30}$$C_5\times C_{30}$$C_3\times C_{30}$$C_3\times C_{30}$

Other information

Number of subgroups in this autjugacy class$241$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{241}:C_{30}$