Properties

Label 108000.b.720.ck1
Order $ 2 \cdot 3 \cdot 5^{2} $
Index $ 2^{4} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{15}$
Order: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Index: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{3}c^{3}d^{9}ef^{4}, c^{2}d^{20}, ef, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_{15}:C_4^2$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$S_3\times D_{10}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_5\times D_5$
Normalizer:$C_5^3.D_6.C_2^2$
Normal closure:$C_5^3.C_3:S_3.C_2^2$
Core:$C_3$
Minimal over-subgroups:$C_5^2\times D_{15}$$C_{15}:D_{15}$$C_{15}:D_{10}$$C_5\times D_{30}$$D_5\times D_{15}$$D_5\times D_{15}$$C_{15}:D_{10}$$C_{15}:D_{10}$$C_{15}:D_{10}$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times D_5$$C_5\times S_3$$D_{15}$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$