Properties

Label 108000.b.1440.c1
Order $ 3 \cdot 5^{2} $
Index $ 2^{5} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{15}$
Order: \(75\)\(\medspace = 3 \cdot 5^{2} \)
Index: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $c^{2}d^{20}, ef, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{15}^2\times D_5$
Normalizer:$C_5^3.C_6^2.C_2^3$
Normal closure:$C_5^2\times C_{15}$
Core:$C_3$
Minimal over-subgroups:$C_5^2\times C_{15}$$C_{15}^2$$S_3\times C_5^2$$C_5\times C_{30}$$D_5\times C_{15}$$D_5\times C_{15}$$C_{15}:D_5$$C_{15}:D_5$$S_3\times C_5^2$$C_5\times D_{15}$$C_5\times D_{15}$$C_5:D_{15}$$C_5:D_{15}$
Maximal under-subgroups:$C_5^2$$C_{15}$$C_{15}$$C_{15}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$