Properties

Label 108000.b.72.a1
Order $ 2^{2} \cdot 3 \cdot 5^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_5^2$
Order: \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $c^{3}d^{27}ef^{2}, f, c^{2}d^{20}, d^{6}, d^{15}e^{2}f^{2}, ef$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6.D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5^3:D_6$, of order \(96000\)\(\medspace = 2^{8} \cdot 3 \cdot 5^{3} \)
$W$$D_5^3.D_6$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$D_5^3.C_3^2:D_6$
Minimal over-subgroups:$C_3^2\times C_5^3:C_2^2$$C_3\times C_5^3:A_4$$C_3\times C_5^3:A_4$$C_3\times C_5^3:C_2^3$$C_5^3:(C_2^2\times S_3)$$C_5^3:(C_2^2\times S_3)$
Maximal under-subgroups:$C_5^2:C_{30}$$C_5:D_5^2$$C_3\times D_5^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$