Subgroup ($H$) information
| Description: | $C_{60}:S_3$ |
| Order: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Index: | \(3\) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$a, c^{4}, d^{3}, c^{6}, c^{3}, b$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{30}.S_3^2$ |
| Order: | \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:S_3.(C_6\times A_4).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_4\times \AGL(2,3)$ |
| $\card{\operatorname{res}(S)}$ | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $C_3:S_3^2$ |