Properties

Label 1080.260.18.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & z_{2} & z_{2} \\ 0 & 1 & z_{2} \end{array}\right), \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & z_{2} & z_{2} + 1 \\ 0 & z_{2} + 1 & z_{2} \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Ambient group ($G$) information

Description: $C_3.A_6$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and quasisimple (hence nonsolvable and perfect).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 18T262.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$A_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$\GL(2,4)$
Normal closure:$C_3.A_6$
Core:$C_1$
Minimal over-subgroups:$\GL(2,4)$
Maximal under-subgroups:$A_4$$D_5$$S_3$
Autjugate subgroups:1080.260.18.a1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_3.A_6$