Properties

Label 1080.178.6.d1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times D_{10}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $a, b^{2}, b^{6}, b^{9}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{30}.C_6^2$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times \He_3).C_2^5$
$\operatorname{Aut}(H)$ $D_{10}:C_{12}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_{10}:C_{12}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_{30}.C_6^2$
Complements:$C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_{30}:C_{18}$$C_{45}:D_4$
Maximal under-subgroups:$C_{90}$$C_9\times D_5$$C_3\times D_{10}$$C_2\times C_{18}$
Autjugate subgroups:1080.178.6.d1.b11080.178.6.d1.c1

Other information

Möbius function$1$
Projective image$C_3\times D_{10}$