Subgroup ($H$) information
Description: | $C_2^{13}.A_{14}$ |
Order: | \(357082280755200\)\(\medspace = 2^{23} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Exponent: | \(720720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
Generators: |
$\langle(3,4)(7,8)(13,14)(15,26,19,16,25,20)(17,18)(27,28), (3,4)(7,30,11,8,29,12) \!\cdots\! \rangle$
|
Derived length: | $0$ |
The subgroup is nonabelian and perfect (hence nonsolvable).
Ambient group ($G$) information
Description: | $C_2^{14}.A_{15}$ |
Order: | \(10712468422656000\)\(\medspace = 2^{24} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \) |
Exponent: | \(720720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
Derived length: | $0$ |
The ambient group is nonabelian and perfect (hence nonsolvable).
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 30T5688.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(21424936845312000\)\(\medspace = 2^{25} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \) |
$\operatorname{Aut}(H)$ | Group of order \(714164561510400\)\(\medspace = 2^{24} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $15$ |
Möbius function | not computed |
Projective image | not computed |