Properties

Label 10616832.ko.663552._.B
Order $ 2^{4} $
Index $ 2^{13} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,4,2,3)(5,7,6,8)(9,11,10,12)(13,15,14,16)(17,19,18,20)(21,24,22,23)(25,28,26,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $D_4^3.A_4^3:A_4$
Order: \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^5.A_4^3:A_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: Group of order \(3822059520\)\(\medspace = 2^{20} \cdot 3^{6} \cdot 5 \)
Outer Automorphisms: $C_5^3:C_{20}.Q_8$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(8153726976\)\(\medspace = 2^{25} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed