Properties

Label 1056.940.44.b1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{3}, d^{22}, b^{2}d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{12}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{33}\times A_4).C_5.C_2^5$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$D_{22}$
Normalizer:$D_{12}:D_{22}$
Complements:$D_{22}$
Minimal over-subgroups:$C_{11}\times D_{12}$$D_{12}:C_2$$C_2\times D_{12}$$S_3\times D_4$
Maximal under-subgroups:$D_6$$C_{12}$$D_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-22$
Projective image$D_6\times D_{22}$