Properties

Label 1056.940.4.e1
Order $ 2^{3} \cdot 3 \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{12}$
Order: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $a, d^{4}, d^{22}, b^{3}, b^{2}d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{12}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{33}\times A_4).C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{60}:C_2^3$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_{60}:C_2^3$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(44\)\(\medspace = 2^{2} \cdot 11 \)
$W$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$D_{12}:D_{22}$
Complements:$C_2^2$
Minimal over-subgroups:$D_{11}\times D_{12}$$C_{12}:D_{22}$$D_{12}:C_{22}$
Maximal under-subgroups:$S_3\times C_{22}$$C_{132}$$D_4\times C_{11}$$D_{12}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$2$
Projective image$D_6\times D_{22}$