Subgroup ($H$) information
| Description: | $C_3:C_8$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Index: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$bc, b^{2}d^{3}, d^{3}, d^{2}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{132}.C_2^3$ |
| Order: | \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \) |
| Exponent: | \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{66}.C_{10}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| $W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_4$ | |||
| Normalizer: | $Q_{16}:S_3$ | |||
| Normal closure: | $C_{33}:C_8$ | |||
| Core: | $C_{12}$ | |||
| Minimal over-subgroups: | $C_{33}:C_8$ | $C_{24}:C_2$ | $Q_8:S_3$ | $C_3:Q_{16}$ |
| Maximal under-subgroups: | $C_{12}$ | $C_8$ |
Other information
| Number of subgroups in this conjugacy class | $11$ |
| Möbius function | $-2$ |
| Projective image | $D_6:D_{22}$ |