Properties

Label 1056.507.4.g1.a1
Order $ 2^{3} \cdot 3 \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}:C_8$
Order: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Generators: $bc, d^{3}, d^{2}, b^{2}d^{3}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{132}.C_2^3$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}:(C_2^2\times C_{10}\times S_3)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_3\times D_{22}$, of order \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{132}.C_2^3$
Minimal over-subgroups:$C_{33}:\OD_{16}$$Q_8:D_{33}$$C_{33}:Q_{16}$
Maximal under-subgroups:$C_{132}$$C_{11}:C_8$$C_3:C_8$

Other information

Möbius function$2$
Projective image$D_6:D_{22}$