Properties

Label 1056.237.3.a1.a1
Order $ 2^{5} \cdot 11 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:D_{22}$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Index: \(3\)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a, c^{24}, c^{33}, c^{198}, b, c^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{24}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{22}.(C_2^4\times C_{10})$
$\card{\operatorname{res}(S)}$\(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4\times D_{11}$, of order \(176\)\(\medspace = 2^{4} \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_8:D_{22}$
Normal closure:$C_{24}:D_{22}$
Core:$C_{88}:C_2$
Minimal over-subgroups:$C_{24}:D_{22}$
Maximal under-subgroups:$C_{88}:C_2$$C_{11}\times D_8$$D_4\times D_{11}$$C_{11}:\SD_{16}$$D_4:D_{11}$$C_{11}:D_8$$C_{88}:C_2$$D_8:C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_{11}\times D_{12}$