Subgroup ($H$) information
| Description: | $C_8:D_{22}$ |
| Order: | \(352\)\(\medspace = 2^{5} \cdot 11 \) |
| Index: | \(3\) |
| Exponent: | \(88\)\(\medspace = 2^{3} \cdot 11 \) |
| Generators: |
$a, c^{24}, c^{33}, c^{198}, b, c^{132}$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{24}:D_{22}$ |
| Order: | \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \) |
| Exponent: | \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{66}.C_{10}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_{22}.(C_2^4\times C_{10})$ |
| $\card{\operatorname{res}(S)}$ | \(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_4\times D_{11}$, of order \(176\)\(\medspace = 2^{4} \cdot 11 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $D_{11}\times D_{12}$ |