Properties

Label 1056.234.4.f1.a1
Order $ 2^{3} \cdot 3 \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{264}$
Order: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Generators: $c^{33}, c^{24}, c^{66}, c^{176}, c^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, and cyclic (hence abelian, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{24}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2^3\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times C_{10}$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{264}$
Normalizer:$C_{24}:D_{22}$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$D_{11}\times C_{24}$$C_{24}:C_{22}$$C_{264}:C_2$
Maximal under-subgroups:$C_{132}$$C_{88}$$C_{24}$

Other information

Möbius function$2$
Projective image$D_{11}\times D_{12}$