Properties

Label 1056.105.32.a1.a1
Order $ 3 \cdot 11 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}$
Order: \(33\)\(\medspace = 3 \cdot 11 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $c^{22}, c^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{33}:Q_{32}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $Q_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $4$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{44}.(C_2^4\times C_{20})$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(704\)\(\medspace = 2^{6} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$Q_{16}\times C_{33}$
Normalizer:$C_{33}:Q_{32}$
Complements:$Q_{32}$
Minimal over-subgroups:$C_{66}$
Maximal under-subgroups:$C_{11}$$C_3$

Other information

Möbius function$0$
Projective image$C_{11}:Q_{32}$