Properties

Label 1056.105.2.a1.a1
Order $ 2^{4} \cdot 3 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}\times C_{33}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Index: \(2\)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Generators: $a, b^{8}, c^{22}, c^{3}, b^{14}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{33}:Q_{32}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{44}.(C_2^4\times C_{20})$
$\operatorname{Aut}(H)$ $C_5:(C_4.C_2^5)$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_5 \times (C_8:C_2^4)$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(22\)\(\medspace = 2 \cdot 11 \)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{66}$
Normalizer:$C_{33}:Q_{32}$
Minimal over-subgroups:$C_{33}:Q_{32}$
Maximal under-subgroups:$C_{264}$$Q_8\times C_{33}$$C_{11}\times Q_{16}$$C_3\times Q_{16}$

Other information

Möbius function$-1$
Projective image$C_{11}:D_8$