Properties

Label 1056.105.11.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times Q_{32}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(11\)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a, b^{8}, b^{4}, b, c^{22}, b^{14}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{33}:Q_{32}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{44}.(C_2^4\times C_{20})$
$\operatorname{Aut}(H)$ $\OD_{32}.C_2^3$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_4^2.D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_{32}$
Normal closure:$C_{33}:Q_{32}$
Core:$C_3\times Q_{16}$
Minimal over-subgroups:$C_{33}:Q_{32}$
Maximal under-subgroups:$C_3\times Q_{16}$$C_3\times Q_{16}$$C_{48}$$Q_{32}$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$C_{11}:D_8$