Properties

Label 104162436.b.531441.a1.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 3^{12} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{28}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(531441\)\(\medspace = 3^{12} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $\langle(1,35,21,11,37,30,13,6,31,22,9,40,26,16,2,36,20,10,38,28,15,4,32,24,8,42,27,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3^{12}.C_7.C_{28}$
Order: \(104162436\)\(\medspace = 2^{2} \cdot 3^{12} \cdot 7^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(64997360064\)\(\medspace = 2^{6} \cdot 3^{13} \cdot 7^{2} \cdot 13 \)
$\operatorname{Aut}(H)$ $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_7:C_{28}$
Normal closure:$C_3^{12}.C_7.C_{28}$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$531441$
Möbius function not computed
Projective image not computed