Subgroup ($H$) information
| Description: | $A_4$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Index: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $\langle(1,4,2), (1,4)(2,3), (1,3)(2,4)\rangle$ | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $A_4^2:\SOPlus(4,2)$ | 
| Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_6^2:D_{12}$ | 
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $F_9:C_2\times S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) | 
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| Derived length: | $3$ | 
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4^2.\SOPlus(4,2)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) | 
| $\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $A_4^2:\SOPlus(4,2)$ | 
