Properties

Label 10368.rp.432.ct1
Order $ 2^{3} \cdot 3 $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,13)(11,12), (1,4,2), (1,4)(2,3), (1,3)(2,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4^2:\SOPlus(4,2)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4^2.\SOPlus(4,2)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times S_4$
Normalizer:$A_4:\GL(2,\mathbb{Z}/4)$
Normal closure:$C_6^2:C_6$
Core:$A_4$
Minimal over-subgroups:$C_6\times A_4$$S_3\times A_4$$S_3\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2\times S_4$$A_4:C_4$$A_4:C_4$
Maximal under-subgroups:$A_4$$C_2^3$$C_6$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-24$
Projective image$A_4^2:\SOPlus(4,2)$