Subgroup ($H$) information
Description: | $C_2\times C_{16}$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$c, b^{2}c^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_4:D_8.D_8$ |
Order: | \(1024\)\(\medspace = 2^{10} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $7$ |
Derived length: | $3$ |
The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_4:D_4).C_2^6.C_2$ |
$\operatorname{Aut}(H)$ | $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \) |
$\operatorname{res}(S)$ | $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $8$ |
Möbius function | $0$ |
Projective image | $C_2^3.C_2\wr C_4$ |