Properties

Label 1024.dfb.16.m1
Order $ 2^{6} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,5,2,6)(3,7,4,8)(9,13)(10,14)(11,15)(12,16), (5,6)(7,8)(13,14)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6.\OD_{16}$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2\wr D_4$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $C_2^9.S_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^2.D_4^2$
Normal closure:$C_2^4:D_4$
Core:$C_2^2\times C_4$
Minimal over-subgroups:$C_2^4:D_4$
Maximal under-subgroups:$C_2^2\times D_4$$C_2^3:C_4$$C_2^5$$C_2^2\times D_4$$C_2^3:C_4$$C_2^2\wr C_2$$C_2^2\wr C_2$$C_2^2\wr C_2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$(C_2^3\times C_4) . (C_2\times C_8)$