Properties

Label 1024.ddn.8.BB
Order $ 2^{7} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,7)(6,8)(9,11)(10,12)(13,14)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $(C_2\times D_4^2):D_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2\wr D_4$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ $C_2^6.C_2^2\wr D_4$, of order \(131072\)\(\medspace = 2^{17} \)
$\card{W}$\(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$(C_2\times D_4^2):D_4$
Minimal over-subgroups:$D_4^2:C_2^2$$C_2^2\times D_4^2$$D_4^2:C_2^2$$D_4^2:C_2^2$$D_4^2:C_4$
Maximal under-subgroups:$C_2^3:D_4$$C_4^2:C_2^2$$D_4^2$$D_4^2$$D_4^2$$C_2^3:D_4$$C_2^3:D_4$$C_4^2:C_2^2$$D_4\times C_2^3$$D_4^2$$D_4^2$$D_4^2$$D_4^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed