Properties

Label 1024.ddn.4.I
Order $ 2^{8} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4^2:C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,7)(6,8)(9,11)(10,12)(13,14)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $(C_2\times D_4^2):D_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2\wr D_4$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ $C_2^{10}.(C_2\times \GL(2,\mathbb{Z}/4))$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \)
$\card{W}$\(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times D_4^2):D_4$
Minimal over-subgroups:$C_2^5.C_2^4$$C_2^3.C_2^5.C_2$$C_2^3.C_2^5.C_2$
Maximal under-subgroups:$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$C_2\times D_4^2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$C_2\times D_4^2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$C_2\times D_4^2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$$D_4^2:C_2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed