Properties

Label 1024.ddc.8.l1.a1
Order $ 2^{7} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $abc^{7}d^{14}, d, c^{2}d^{4}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $Q_{16}^2:C_2^2$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4^2.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_4^2.D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_8$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$D_{16}:D_8$
Normal closure:$D_{16}:D_8$
Core:$C_4\times C_8$
Minimal over-subgroups:$C_{16}.D_8$$D_{16}:C_8$$D_{16}:D_4$
Maximal under-subgroups:$\OD_{32}:C_2$$\OD_{32}:C_2$$D_8:C_4$$C_4\times C_{16}$$C_8.C_8$
Autjugate subgroups:1024.ddc.8.l1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_8\wr C_2$