Properties

Label 1024.ddc.4.j1.b1
Order $ 2^{8} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{16}:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $abc^{7}d^{14}, d, b^{2}c^{6}d^{6}, c^{2}d^{4}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $Q_{16}^2:C_2^2$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4^2.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_4^2.C_2^3.C_2^4$
$\card{\operatorname{res}(S)}$\(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_8^2$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{16}:D_8$
Normal closure:$D_{16}:D_8$
Core:$C_2.D_4^2$
Minimal over-subgroups:$D_{16}:D_8$
Maximal under-subgroups:$C_2.D_4^2$$C_{16}.D_4$$D_8:D_4$$C_8.D_8$$C_{16}.D_4$$D_4.D_8$$D_4.D_8$$D_8:D_4$$D_{16}:C_4$$D_{16}:C_2^2$$C_{16}:D_4$
Autjugate subgroups:1024.ddc.4.j1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_8\wr C_2$