Properties

Label 1008.598.8.e1.a1
Order $ 2 \cdot 3^{2} \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}:S_3$
Order: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ac^{49}, c^{28}, d, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{42}:D_6$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times S_3^2\times F_7$
$\operatorname{Aut}(H)$ $C_6\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_6\times S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(28\)\(\medspace = 2^{2} \cdot 7 \)
$W$$C_6:S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_{42}:D_6$
Normal closure:$C_{42}:S_3$
Core:$C_3\times C_{21}$
Minimal over-subgroups:$C_{42}:S_3$$C_{21}:D_6$$C_{21}:D_6$
Maximal under-subgroups:$C_3\times C_{21}$$S_3\times C_7$$S_3\times C_7$$S_3\times C_7$$S_3\times C_7$$C_3:S_3$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{42}:D_6$