Properties

Label 1008.598.2.d1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}:D_6$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Index: \(2\)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ac^{49}, c^{12}, c^{42}, c^{28}, b, d$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{42}:D_6$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times S_3^2\times F_7$
$\operatorname{Aut}(H)$ $C_2^2\times \AGL(2,3)\times F_7$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_7\times S_3^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{42}:D_6$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{42}:D_6$
Maximal under-subgroups:$C_3^2\times D_{14}$$C_{42}:S_3$$C_3:D_{42}$$C_{21}:D_6$$C_{21}:D_6$$S_3\times D_{14}$$S_3\times D_{14}$$S_3\times D_{14}$$C_6:D_6$

Other information

Möbius function$-1$
Projective image$D_7\times S_3^2$