Properties

Label 1008.598.8.d1.a1
Order $ 2 \cdot 3^{2} \cdot 7 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_7$
Order: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $b, d, c^{12}, c^{28}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{42}:D_6$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times S_3^2\times F_7$
$\operatorname{Aut}(H)$ $F_7\times \GL(2,3)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_{42}:D_6$
Normal closure:$C_3^2\times D_{14}$
Core:$C_3\times C_{21}$
Minimal over-subgroups:$C_3^2\times D_{14}$$C_{21}:D_6$$C_{21}:D_6$
Maximal under-subgroups:$C_3\times C_{21}$$C_3\times D_7$$C_3\times D_7$$C_3\times D_7$$C_3\times D_7$$C_3\times C_6$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{42}:D_6$