Properties

Label 100000000.bp.2._.D
Order $ 2^{7} \cdot 5^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^6.(C_2\times C_{10}^2:\OD_{16})$
Order: \(50000000\)\(\medspace = 2^{7} \cdot 5^{8} \)
Index: \(2\)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $\langle(21,24,22,25,23)(31,35,34,33,32), (1,5,4,3,2)(11,12,13,14,15)(16,20,19,18,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^4.D_5^4.(C_2\times Q_8)$
Order: \(100000000\)\(\medspace = 2^{8} \cdot 5^{8} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12800000000\)\(\medspace = 2^{15} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ Group of order \(51200000000\)\(\medspace = 2^{17} \cdot 5^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed