Properties

Label 50000000.qt
Order \( 2^{7} \cdot 5^{8} \)
Exponent \( 2^{3} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \)
Perm deg. $40$
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32)(18,25,26,35,19,24,27,31), (1,12,5,14,4,11,3,13,2,15)(6,36)(7,38)(8,40)(9,37)(10,39)(16,29,18,28,20,27,17,26,19,30)(21,33,25,35,24,32,23,34,22,31), (1,37,15,9,3,39,13,7)(2,38,14,8)(4,40,12,6,5,36,11,10)(16,34,30,21,17,33,26,25)(18,32,27,24,20,35,29,22)(19,31,28,23), (1,32,4,34)(2,31,3,35)(5,33)(6,36)(7,37,10,40)(8,38,9,39)(11,21,12,22)(13,23,15,25)(14,24)(16,26)(17,27,20,30)(18,28,19,29) >;
 
Copy content gap:G := Group( (1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32)(18,25,26,35,19,24,27,31), (1,12,5,14,4,11,3,13,2,15)(6,36)(7,38)(8,40)(9,37)(10,39)(16,29,18,28,20,27,17,26,19,30)(21,33,25,35,24,32,23,34,22,31), (1,37,15,9,3,39,13,7)(2,38,14,8)(4,40,12,6,5,36,11,10)(16,34,30,21,17,33,26,25)(18,32,27,24,20,35,29,22)(19,31,28,23), (1,32,4,34)(2,31,3,35)(5,33)(6,36)(7,37,10,40)(8,38,9,39)(11,21,12,22)(13,23,15,25)(14,24)(16,26)(17,27,20,30)(18,28,19,29) );
 
Copy content sage:G = PermutationGroup(['(1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32)(18,25,26,35,19,24,27,31)', '(1,12,5,14,4,11,3,13,2,15)(6,36)(7,38)(8,40)(9,37)(10,39)(16,29,18,28,20,27,17,26,19,30)(21,33,25,35,24,32,23,34,22,31)', '(1,37,15,9,3,39,13,7)(2,38,14,8)(4,40,12,6,5,36,11,10)(16,34,30,21,17,33,26,25)(18,32,27,24,20,35,29,22)(19,31,28,23)', '(1,32,4,34)(2,31,3,35)(5,33)(6,36)(7,37,10,40)(8,38,9,39)(11,21,12,22)(13,23,15,25)(14,24)(16,26)(17,27,20,30)(18,28,19,29)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2833422269794574208067851962568270972716467221300123037231471766226230393630498093372404745097327627271580054718409653664604569990045568189859837038977055100650690847120823877163713745576718111392586462415126241512624149642154692443085489224866095441049500594906678262258970318746063864558577741067708149198952343503542310914228277425301047147354143681736703862396980411867126789149106898042014169635024109284261489388278733696245070943814277209808855866351262593328025969963335555513032614672323561304879186272272405856626053241185223064002378935597448524993317161539784757207261328742851773508408953626547494968551967252319883263,50000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 

Group information

Description:$C_5^6.(C_2\times C_{10}^2:\OD_{16})$
Order: \(50000000\)\(\medspace = 2^{7} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(51200000000\)\(\medspace = 2^{17} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10
Elements 1 466975 12500000 390624 25000000 11642400 50000000
Conjugacy classes   1 19 20 3648 16 1632 5336
Divisions 1 19 12 3648 8 1632 5320

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{4}=c^{10}=d^{10}=e^{10}=f^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 2, 2, 2, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 5, 30, 574244776, 551421902, 1122575867, 122, 2175575523, 478485378, 1206963604, 316732219, 424212934, 410110399, 214, 1418408645, 1367282900, 74162195, 1490, 2354073966, 1638865221, 99636636, 225726951, 136383516, 106838106, 306, 4071552007, 57622, 1314268837, 19252, 202089667, 4539369608, 2949804023, 913302038, 316953053, 411331568, 43409333, 8733248, 11367788, 398, 6571248009, 720024, 360039, 240054, 120069, 12099, 3038640010, 2640025, 1320040, 1320055, 660070, 36300100, 6730, 8766720011, 2439360026, 7200041, 7200056, 491940071, 36131, 7693938732, 4311840027, 1427400042, 39000057, 512460072, 2145102, 1911132, 6834260173, 4300800028, 2150400043, 210000058, 598500073, 43596103, 1585633, 10598400014, 2656800029, 2727000044, 1125000059, 636075074, 47655104, 5625134]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(2833422269794574208067851962568270972716467221300123037231471766226230393630498093372404745097327627271580054718409653664604569990045568189859837038977055100650690847120823877163713745576718111392586462415126241512624149642154692443085489224866095441049500594906678262258970318746063864558577741067708149198952343503542310914228277425301047147354143681736703862396980411867126789149106898042014169635024109284261489388278733696245070943814277209808855866351262593328025969963335555513032614672323561304879186272272405856626053241185223064002378935597448524993317161539784757207261328742851773508408953626547494968551967252319883263,50000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2833422269794574208067851962568270972716467221300123037231471766226230393630498093372404745097327627271580054718409653664604569990045568189859837038977055100650690847120823877163713745576718111392586462415126241512624149642154692443085489224866095441049500594906678262258970318746063864558577741067708149198952343503542310914228277425301047147354143681736703862396980411867126789149106898042014169635024109284261489388278733696245070943814277209808855866351262593328025969963335555513032614672323561304879186272272405856626053241185223064002378935597448524993317161539784757207261328742851773508408953626547494968551967252319883263,50000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2833422269794574208067851962568270972716467221300123037231471766226230393630498093372404745097327627271580054718409653664604569990045568189859837038977055100650690847120823877163713745576718111392586462415126241512624149642154692443085489224866095441049500594906678262258970318746063864558577741067708149198952343503542310914228277425301047147354143681736703862396980411867126789149106898042014169635024109284261489388278733696245070943814277209808855866351262593328025969963335555513032614672323561304879186272272405856626053241185223064002378935597448524993317161539784757207261328742851773508408953626547494968551967252319883263,50000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Permutation group:Degree $40$ $\langle(1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32)(18,25,26,35,19,24,27,31), (1,12,5,14,4,11,3,13,2,15)(6,36)(7,38)(8,40)(9,37)(10,39)(16,29,18,28,20,27,17,26,19,30)(21,33,25,35,24,32,23,34,22,31), (1,37,15,9,3,39,13,7)(2,38,14,8)(4,40,12,6,5,36,11,10)(16,34,30,21,17,33,26,25)(18,32,27,24,20,35,29,22)(19,31,28,23), (1,32,4,34)(2,31,3,35)(5,33)(6,36)(7,37,10,40)(8,38,9,39)(11,21,12,22)(13,23,15,25)(14,24)(16,26)(17,27,20,30)(18,28,19,29) >;
 
Copy content gap:G := Group( (1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32)(18,25,26,35,19,24,27,31), (1,12,5,14,4,11,3,13,2,15)(6,36)(7,38)(8,40)(9,37)(10,39)(16,29,18,28,20,27,17,26,19,30)(21,33,25,35,24,32,23,34,22,31), (1,37,15,9,3,39,13,7)(2,38,14,8)(4,40,12,6,5,36,11,10)(16,34,30,21,17,33,26,25)(18,32,27,24,20,35,29,22)(19,31,28,23), (1,32,4,34)(2,31,3,35)(5,33)(6,36)(7,37,10,40)(8,38,9,39)(11,21,12,22)(13,23,15,25)(14,24)(16,26)(17,27,20,30)(18,28,19,29) );
 
Copy content sage:G = PermutationGroup(['(1,6,12,38,4,9,14,36)(2,7,11,39,3,8,15,40)(5,10,13,37)(16,22,29,33)(17,21,30,34,20,23,28,32)(18,25,26,35,19,24,27,31)', '(1,12,5,14,4,11,3,13,2,15)(6,36)(7,38)(8,40)(9,37)(10,39)(16,29,18,28,20,27,17,26,19,30)(21,33,25,35,24,32,23,34,22,31)', '(1,37,15,9,3,39,13,7)(2,38,14,8)(4,40,12,6,5,36,11,10)(16,34,30,21,17,33,26,25)(18,32,27,24,20,35,29,22)(19,31,28,23)', '(1,32,4,34)(2,31,3,35)(5,33)(6,36)(7,37,10,40)(8,38,9,39)(11,21,12,22)(13,23,15,25)(14,24)(16,26)(17,27,20,30)(18,28,19,29)'])
 
Transitive group: 40T186124 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^3)$ . $\OD_{16}$ (8) $(C_5^8.C_2.C_2^3)$ . $D_4$ (4) $C_5^4$ . $(C_2\times D_5^4.C_4)$ (4) $(C_5^6.D_5:F_5)$ . $C_2^4$ all 45

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 247 normal subgroups (33 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 33 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $5336 \times 5336$ character table is not available for this group.

Rational character table

The $5320 \times 5320$ rational character table is not available for this group.