-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '9604.m', 'ambient_counter': 13, 'ambient_order': 9604, 'ambient_tex': 'C_7\\wr C_4', 'central': False, 'central_factor': False, 'centralizer_order': 14, 'characteristic': False, 'core_order': 49, 'counter': 17, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '9604.m.49.a1', 'maximal': True, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '49.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 49, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '196.5', 'subgroup_hash': 5, 'subgroup_order': 196, 'subgroup_tex': 'C_7:C_{28}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '9604.m', 'aut_centralizer_order': None, 'aut_label': '49.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '686.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['1.a1'], 'contains': ['98.b1', '343.a1', '343.b1'], 'core': '196.a1', 'coset_action_label': None, 'count': 49, 'diagramx': [8905, -1, 9225, -1], 'generators': [7, 14, 5516, 4], 'label': '9604.m.49.a1', 'mobius_quo': None, 'mobius_sub': -1, 'normal_closure': '1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '49.a1', 'old_label': '49.a1', 'projective_image': '1372.31', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '49.a1', 'subgroup_fusion': None, 'weyl_group': '14.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '28.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 42, 'aut_gen_orders': [2, 6, 42], 'aut_gens': [[1, 28], [15, 28], [1, 84], [73, 28]], 'aut_group': '504.178', 'aut_hash': 178, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 504, 'aut_permdeg': 14, 'aut_perms': [744, 526943764, 19806758163], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 7, 2, 1], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 18, 1], [14, 1, 6, 1], [14, 2, 3, 1], [14, 2, 18, 1], [28, 7, 12, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{14}:C_6^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '12.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 12, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times C_6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 42, 'autcentquo_group': '42.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 42, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_7', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 7, 2], [7, 1, 6], [7, 2, 21], [14, 1, 6], [14, 2, 21], [28, 7, 12]], 'center_label': '14.2', 'center_order': 14, 'central_product': True, 'central_quotient': '14.1', 'commutator_count': 1, 'commutator_label': '7.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '7.1', '7.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['28.1', 1], ['7.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 7, 2, 1], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 6, 3], [14, 1, 6, 1], [14, 2, 3, 1], [14, 2, 6, 3], [28, 7, 12, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 48, 'exponent': 28, 'exponents_of_order': [2, 2], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 7], 'faithful_reps': [[2, 0, 18]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '98.3', 'hash': 5, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 14, 'inner_gen_orders': [2, 7], 'inner_gens': [[1, 168], [57, 28]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 14, 'inner_split': True, 'inner_tex': 'D_7', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 4, 'irrep_stats': [[1, 28], [2, 42]], 'label': '196.5', 'linC_count': 18, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 5, 'linQ_dim': 12, 'linQ_dim_count': 3, 'linR_count': 27, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C7:C28', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 10, 'number_conjugacy_classes': 70, 'number_divisions': 14, 'number_normal_subgroups': 10, 'number_subgroup_autclasses': 14, 'number_subgroup_classes': 18, 'number_subgroups': 36, 'old_label': None, 'order': 196, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 1], [4, 14], [7, 48], [14, 48], [28, 84]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [6, 6], 'outer_gen_pows': [0, 0], 'outer_gens': [[11, 28], [13, 84]], 'outer_group': '36.14', 'outer_hash': 14, 'outer_nilpotent': True, 'outer_order': 36, 'outer_permdeg': 10, 'outer_perms': [362883, 5184], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_6^2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 18, 'pgroup': 0, 'primary_abelian_invariants': [4, 7], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [6, 4], [12, 7]], 'representations': {'PC': {'code': 128398020947, 'gens': [1, 4], 'pres': [4, -2, -2, -7, -7, 8, 21, 2691]}, 'GLFp': {'d': 2, 'p': 29, 'gens': [390225, 536562, 957]}, 'Perm': {'d': 18, 'gens': [4032127, 378011776665600, 7983360, 973]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [28], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_7:C_{28}', 'transitive_degree': 28, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '28.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 336, 'aut_gen_orders': [12, 24, 12, 48, 6], 'aut_gens': [[1, 28, 196, 1372], [843, 8204, 2324, 3276], [5225, 5992, 8260, 7560], [7391, 1932, 4816, 6076], [2217, 448, 8204, 8848], [6099, 3472, 1204, 8512]], 'aut_group': None, 'aut_hash': 1824229538155099556, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1185408, 'aut_permdeg': 692, 'aut_perms': [33853154951251656447916985707802876642457869911991498693842852212588702329321659365954612889615023798538417917449718439596869349109019100781422118414475898984292329362192069613676468267531090440986372374997622181352764538296884285312910107314443686638952637182342500389048736884721534336431477373729464112733518321177755435859024569992435610619751434826498667463952709692695428939261961577939675429735277475612501694223631735790864673176931813868900030530319618210131622270521019758760231985225266197133421259149795340264248247070749753277746653281566818615289062950636265295933465251679717161526136958713841955757717643493822383753928703526973275598323845150487206772205029172041907762262461761225137471441258329002801838590823929016668391409912328044351440920831802058863684698853045432346520659464597877635926320713679164156102344470702953201831427025859821001746553627451594205762842641546820676594121852824783200123017505824723591294045690307702268923726870726624475664129351438230660752984424141117351951677895501376301454556295362204261200900673517448378923821507598709920979590928151307329978813535972961882237578996814582681002362906342370452947542651687128723311153066372111268507995046478255750129170049772261251784604616497328680348460986982821470943450759640424221953303317868233659391269949468966399486960740193097321060207943509171747458373010240437250925931641312823729355775555966040160563422855007747265711353999604355654334709303909336574414435009584913974170175777093483707145874644166410845488170342523056028693755381278333059287550148455812123736797829499497786438345150794379351129142889722728551396341551564237434899040002657374825980574744681, 41843103564084273676733628446806114371171151892658193895885743218018719280051885059429633443977645176987497442572674853378800902357145065086555698760849678404407470705306885785802636777549075772556352759744247268739722650080796635484388295812086939154628041213902481250476546659236119838035865070143040632625298069696383074562743505299956530659832322056462283288782277865371423982233537098971471482544324241794997032333695708842557818301991936465211281933920834343905126110361812244035320483790462783245510521896628833428397814468077143061362980396700915753371490309343730906322103051801748196903116463155973066892723422473836507974406372237209420804618710148698470237201717497572172550433646603004630129139286638158731497007503680150809655484405385016013410809728419917858406256129510905602701466221723487662187146806079241514127536074787561209768111054411610644651631893536014848343368021698654186030683953864905296479994752177513743368899997163091827773122045555369172001834507550834041485847742545022629894866086983266193960838702211801032555198920179973468841769819128871525963246755324610464445027783088596014178476331177254338528382637490589551874917501868902678217166745548031505194667915403053779860784519104012632778830446623759813689559552657180100468366431512924812162022614356074088665696603055365009373653202988764749915355661829155080514876275626475193736502910783540625810253672336383852108920393208314093765276387368822871822919689756361075020427678097568387496201204837861832452414968600220187997069490475626297783281102067852758648693944863878899447436180088960606085550634774014351260774845814222096737823511945998515022847483126363971204773965772, 33832684734856164797599660105524128045835843870895608123171237368710087465104359166718438096728158212615443846333222692574132625759340766744175695919941071879778382775875346124299958635722276259965847930736631647271246349372791789484194010741484696409040063482176700395242083511509076016206957446618027284155505101094022776784270235501418078365849235528207946523467798102329930676107845640559242478236727585502915013877628955900184599544308158703521624195277336718770312465866859179277295266612316451028178995545001730537259442597005814423871090827955098052244027477180168976765908836618240876759790504837764960156652592719533429842781910904675569068863332541369137511366027108305221296719154741659671148985058227034541115527408544510515005014316570987804736178211134424413997082586996605833528988461796661584939126315649094174408048765816383087018282824830003573554582956876500476616079402388989344846411665651948057131312396980841002957912206548535913035239084000297852398666465431751911146254000050925255933495643864328147230077326434985316028101563489313153555609702514899057713167393324695089777924262259694773407474461229357008879296114178434731478940741374496261561298365296379119521385753582471866773461076991633046105954684151748803055133428800920871220220593645418806880684181120261488552876387166620099839872572051104996096850252158434225933848366526600251120672768739364138904917087266262424742552403237117447717368308859719494054600341754726971635955865634676525261423253514511203947752997380984623107330906037015378436433689158841446508518785151354397995753478056994233612187338625981130351272217159242605811399391480916732618888943710307214794114058334, 21881078834657559297582092106592580036753945731516490131126144811877654050169250811444366408171435074745551914720674226834186059313673849224001617543083263716010408866708366839661744064837295374740523978542994109643149568972502350179074057580849153022189732332078160214646575507771087893578532122737654888306662232867562184423221910602759634518474303962703498992404294675690728587764355397676546660267533178985122329757678041438306754743762608666572450798776674772785151993143275755223585327960467947913929482037308050224721672874453154194561031280875025617422448308695661459723633218990872634848287105244170739119618342456333110080473762504308334738668283054490545585729309498673618121228029854952466410591236851255062633812689178539937855038247317057976584111941070991438779743847828214650004783461808285106491612021297450860353975402432649085990645501495675268018611144159002099775164417313600176502326170737249030210925876706477644501765238219291743713875485309144454183413707026272632177837306138393255240146271294580835269172472036884385363143838372379063778735758080106897932803102695526489568859506323859182648769996161934500998708337297350809202934715154153661898804360726751024151336571602700374812662282577905505297675625454446596139168716668164634039916977387675713126621720612194297311720556799024371977151098034176997590295433463344033227037606804419048422216566381340111574638223842881232988925432205386185504979186785177690062032810070781896003792168057932468277794980561370438360641947755474823342158052042052970880863418007679450394890395325363019671132376066847891897359708164930973162292814250050099457792343041886844990708290676551879328114044995, 15604777157841952479700278808881123321316867583463211651071025303055811432762972180255869501191602184823059996703963855611924284536514774315410789115281371569967914360518468298942432832691572370745889062761635007647392983613766825936346121038792561308492719384530851080852259190934278502477593671801248260662057324085493397088513718447622255156724301293189312095043881352749556549202198567675683286214179580844380925632651555106837161577275611792836291726989657136273953604423218907682573115617790279596124397180288419405501091027602026163265376656328332883225236620523889948975769746215145258306568144981276290549075563043702017449125651838072013441021884625088745331516339600996455097221116291853555271670608983659051403795539576419095263703898873474325483751211133000023641930207827680919658609925515962746021126482844736485054371851469158602059551685784298107335457399739811348386776344466526148459882501880269357695150176768298559601046122014549662986951337023240917380951466477974531327349020249574029875906773896618802686427598448410509918244025468053221454160316924448313473539944178548332449051313731636392172347162032269776327811655767439961969504938649774391025425543658417253487859578028462856260879433728733105941289308539324882689405023549687339045430128699384451668129883923659632597750621601004528006602454638439236379456573759896885832510865960455667514302184516078973706016526438093961377995929980959736989110927315151668424210583830188639314304104094514656421676214562838945288849878719477041574448461997094064522695624458931472478432597425363237394399742208375027153166091270672458643263575854805301916212020326073810176836697073152263316681627984], 'aut_phi_ratio': 288.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 49, 1, 1], [4, 343, 2, 1], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 18, 1], [7, 4, 12, 1], [7, 4, 72, 2], [7, 4, 432, 1], [14, 49, 6, 1], [14, 98, 3, 1], [14, 98, 18, 1], [28, 343, 12, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_7^3.C_8.C_6^3.C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 6, 'autcent_group': '6.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 336, 'autcentquo_group': None, 'autcentquo_hash': 5704297344339064290, 'autcentquo_nilpotent': False, 'autcentquo_order': 197568, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_7^3.C_8.C_6^2.C_2', 'cc_stats': [[1, 1, 1], [2, 49, 1], [4, 343, 2], [7, 1, 6], [7, 2, 21], [7, 4, 588], [14, 49, 6], [14, 98, 21], [28, 343, 12]], 'center_label': '7.1', 'center_order': 7, 'central_product': True, 'central_quotient': '1372.31', 'commutator_count': 1, 'commutator_label': '343.5', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '7.1', '7.1', '7.1', '7.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 13, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['1372.31', 1], ['7.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 49, 1, 1], [4, 343, 2, 1], [7, 1, 6, 1], [7, 2, 3, 1], [7, 2, 6, 3], [7, 4, 3, 4], [7, 4, 6, 96], [14, 49, 6, 1], [14, 98, 3, 1], [14, 98, 6, 3], [28, 343, 12, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 48, 'exponent': 28, 'exponents_of_order': [4, 2], 'factors_of_aut_order': [2, 3, 7], 'factors_of_order': [2, 7], 'faithful_reps': [[4, 0, 432]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '9604.m', 'hash': 6060614471244546186, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 28, 'inner_gen_orders': [4, 7, 7, 7], 'inner_gens': [[1, 1204, 2660, 8708], [197, 28, 196, 1372], [8709, 28, 196, 1372], [3837, 28, 196, 1372]], 'inner_hash': 31, 'inner_nilpotent': False, 'inner_order': 1372, 'inner_split': False, 'inner_tex': 'C_7^3:C_4', 'inner_used': [1, 2], 'irrC_degree': 4, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': None, 'irrep_stats': [[1, 28], [2, 42], [4, 588]], 'label': '9604.m', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C7wrC4', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 14, 'number_characteristic_subgroups': 14, 'number_conjugacy_classes': 658, 'number_divisions': 114, 'number_normal_subgroups': 14, 'number_subgroup_autclasses': 54, 'number_subgroup_classes': 1004, 'number_subgroups': 5512, 'old_label': None, 'order': 9604, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 49], [4, 686], [7, 2400], [14, 2352], [28, 4116]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24, 'outer_gen_orders': [6, 6, 24], 'outer_gen_pows': [0, 2, 2], 'outer_gens': [[13, 6972, 4480, 2800], [11, 812, 3920, 3976], [1, 2268, 7504, 9436]], 'outer_group': '864.3980', 'outer_hash': 3980, 'outer_nilpotent': True, 'outer_order': 864, 'outer_permdeg': 19, 'outer_perms': [3629040, 357001333113604, 34214091800359104], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{24}:C_6^2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 28, 'pgroup': 0, 'primary_abelian_invariants': [4, 7], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [6, 4], [12, 11], [24, 96]], 'representations': {'PC': {'code': '18810850901272645466512595490751968577487', 'gens': [1, 4, 5, 6], 'pres': [6, -2, -2, -7, -7, 7, 7, 12, 31, 28899, 100137, 79804, 121810, 313493, 74603]}, 'Lie': [{'d': 1, 'q': 2401, 'family': 'ASigmaL'}], 'Perm': {'d': 28, 'gens': [91677670912242475163273354712, 111855893821342413774841997320]}}, 'schur_multiplier': [7], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [28], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_7\\wr C_4', 'transitive_degree': 28, 'wreath_data': ['C_7', 'C_4', '4T1'], 'wreath_product': True}