-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '960.10981', 'ambient_counter': 10981, 'ambient_order': 960, 'ambient_tex': '\\GL(2,3):D_{10}', 'central': False, 'central_factor': False, 'centralizer_order': 24, 'characteristic': True, 'core_order': 40, 'counter': 108, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '960.10981.24.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '24.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '24.12', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 12, 'quotient_metabelian': False, 'quotient_nilpotent': False, 'quotient_order': 24, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': False, 'quotient_tex': 'S_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '40.6', 'subgroup_hash': 6, 'subgroup_order': 40, 'subgroup_tex': 'D_{20}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '960.10981', 'aut_centralizer_order': 48, 'aut_label': '24.a1', 'aut_quo_index': 1, 'aut_stab_index': 1, 'aut_weyl_group': '160.207', 'aut_weyl_index': 48, 'centralizer': '40.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['8.d1.a1', '12.d1.a1', '12.r1.a1'], 'contains': ['48.a1.a1', '48.a1.b1', '48.b1.a1', '120.k1.a1'], 'core': '24.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [2138, 736, 7936, 6704, 2417, 1273, 2720, 1978], 'generators': [6, 480, 192, 516], 'label': '960.10981.24.a1.a1', 'mobius_quo': 0, 'mobius_sub': -12, 'normal_closure': '24.a1.a1', 'normal_contained_in': ['6.a1.a1'], 'normal_contains': ['48.a1.a1', '48.a1.b1', '48.b1.a1'], 'normalizer': '1.a1.a1', 'old_label': '24.a1.a1', 'projective_image': '480.1193', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '24.a1.a1', 'subgroup_fusion': None, 'weyl_group': '40.13'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 20, 'aut_gen_orders': [2, 4, 20], 'aut_gens': [[1, 2], [11, 22], [1, 26], [3, 2]], 'aut_group': '160.207', 'aut_hash': 207, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 160, 'aut_permdeg': 9, 'aut_perms': [23, 6487, 162737], 'aut_phi_ratio': 10.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 10, 2, 1], [4, 2, 1, 1], [5, 2, 2, 1], [10, 2, 2, 1], [20, 2, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_4\\times F_5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 20, 'autcentquo_group': '40.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 40, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2\\times F_5', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 10, 2], [4, 2, 1], [5, 2, 2], [10, 2, 2], [20, 2, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '20.4', 'commutator_count': 1, 'commutator_label': '10.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 6, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 10, 1, 2], [4, 2, 1, 1], [5, 2, 2, 1], [10, 2, 2, 1], [20, 2, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 20, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2, 5], 'factors_of_order': [2, 5], 'faithful_reps': [[2, 1, 4]], 'familial': True, 'frattini_label': '2.1', 'frattini_quotient': '20.4', 'hash': 6, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 10, 'inner_gen_orders': [2, 10], 'inner_gens': [[1, 38], [5, 2]], 'inner_hash': 4, 'inner_nilpotent': False, 'inner_order': 20, 'inner_split': True, 'inner_tex': 'D_{10}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 2, 'irrep_stats': [[1, 4], [2, 9]], 'label': '40.6', 'linC_count': 4, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 2, 'linQ_dim': 6, 'linQ_dim_count': 2, 'linR_count': 4, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D20', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 7, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 13, 'number_divisions': 8, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 16, 'number_subgroups': 48, 'old_label': None, 'order': 40, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 21], [4, 2], [5, 4], [10, 4], [20, 8]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [10, 0], 'outer_gens': [[11, 2], [1, 26]], 'outer_group': '8.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [120, 17], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 9, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 1], [4, 2], [8, 1]], 'representations': {'PC': {'code': 1042080742915, 'gens': [1, 2], 'pres': [4, -2, -2, -2, -5, 305, 21, 434, 34, 515]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [25038648174890735, 58438765163434099]}, 'GLFp': {'d': 2, 'p': 19, 'gens': [123463, 27002]}, 'Perm': {'d': 9, 'gens': [5167, 13, 23, 50520]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{20}', 'transitive_degree': 20, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 60, 'aut_gen_orders': [4, 2, 2, 2, 4, 2, 2, 2, 12, 10, 10], 'aut_gens': [[1, 2, 12, 24, 48], [253, 158, 492, 24, 624], [253, 722, 12, 24, 528], [481, 578, 12, 504, 432], [1, 494, 492, 24, 528], [745, 266, 492, 24, 816], [481, 482, 12, 504, 48], [733, 242, 12, 24, 528], [1, 14, 492, 504, 528], [21, 494, 720, 756, 636], [481, 386, 12, 504, 48], [5, 394, 492, 504, 540]], 'aut_group': '7680.fo', 'aut_hash': 1388670470427655320, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 7680, 'aut_permdeg': 44, 'aut_perms': [1420815779913097724630111838917927822857404647649991840, 1390990345952340230451474887310263387539983182749489473, 1279294038617457961711073011242240915971916939953702200, 20063286821331468520694991571458460786368408513480, 871996638669926212185021706652874866808686039820149480, 1301272343276085376595171037874613956232747203084633462, 2631830710472100596560427745085588865585321358745337675, 32518356563609719997784297348363309245737428354734882, 1996203411121691155265003611019167055717144728974508049, 1298964126784764826534620412542769752161574545560614621, 2387894477556133967461893342779441511589394787567847809], 'aut_phi_ratio': 30.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 1, 1], [2, 10, 2, 1], [2, 12, 2, 1], [2, 60, 1, 1], [3, 8, 1, 1], [4, 2, 1, 1], [4, 6, 1, 1], [4, 30, 2, 1], [4, 60, 1, 1], [5, 2, 2, 1], [6, 8, 1, 1], [6, 80, 2, 1], [8, 12, 2, 1], [8, 30, 2, 1], [8, 60, 1, 1], [10, 2, 2, 1], [10, 12, 2, 1], [10, 24, 4, 1], [12, 16, 1, 1], [15, 16, 2, 1], [20, 4, 2, 1], [20, 12, 2, 1], [30, 16, 2, 1], [40, 24, 4, 1], [60, 16, 4, 1]], 'aut_supersolvable': False, 'aut_tex': 'D_{10}.(C_2^4\\times S_4)', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '960.11361', 'autcentquo_hash': 11361, 'autcentquo_nilpotent': False, 'autcentquo_order': 960, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_2\\times F_5\\times S_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 6, 1], [2, 10, 2], [2, 12, 2], [2, 60, 1], [3, 8, 1], [4, 2, 1], [4, 6, 1], [4, 30, 2], [4, 60, 1], [5, 2, 2], [6, 8, 1], [6, 80, 2], [8, 12, 2], [8, 30, 2], [8, 60, 1], [10, 2, 2], [10, 12, 2], [10, 24, 4], [12, 16, 1], [15, 16, 2], [20, 4, 2], [20, 12, 2], [30, 16, 2], [40, 24, 4], [60, 16, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '480.1193', 'commutator_count': 1, 'commutator_label': '120.15', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '5.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 10981, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 6, 1, 1], [2, 10, 1, 2], [2, 12, 1, 2], [2, 60, 1, 1], [3, 8, 1, 1], [4, 2, 1, 1], [4, 6, 1, 1], [4, 30, 1, 2], [4, 60, 1, 1], [5, 2, 2, 1], [6, 8, 1, 1], [6, 80, 1, 2], [8, 12, 1, 2], [8, 30, 2, 1], [8, 60, 1, 1], [10, 2, 2, 1], [10, 12, 2, 1], [10, 24, 2, 2], [12, 16, 1, 1], [15, 16, 2, 1], [20, 4, 2, 1], [20, 12, 2, 1], [30, 16, 2, 1], [40, 24, 2, 2], [60, 16, 4, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 30240, 'exponent': 120, 'exponents_of_order': [6, 1, 1], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[8, -1, 2], [8, 0, 4]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '480.1193', 'hash': 10981, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 60, 'inner_gen_orders': [2, 6, 2, 2, 10], 'inner_gens': [[1, 10, 720, 756, 300], [5, 2, 252, 744, 204], [733, 722, 12, 24, 528], [253, 242, 12, 24, 528], [253, 350, 492, 504, 48]], 'inner_hash': 1193, 'inner_nilpotent': False, 'inner_order': 480, 'inner_split': True, 'inner_tex': 'D_{10}\\times S_4', 'inner_used': [1, 2, 3, 4, 5], 'irrC_degree': 8, 'irrQ_degree': 16, 'irrQ_dim': 32, 'irrR_degree': 16, 'irrep_stats': [[1, 8], [2, 12], [3, 8], [4, 6], [6, 8], [8, 7]], 'label': '960.10981', 'linC_count': 16, 'linC_degree': 6, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 12, 'linQ_degree_count': 8, 'linQ_dim': 12, 'linQ_dim_count': 8, 'linR_count': 16, 'linR_degree': 10, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'GL(2,3):D10', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 27, 'number_characteristic_subgroups': 23, 'number_conjugacy_classes': 49, 'number_divisions': 34, 'number_normal_subgroups': 37, 'number_subgroup_autclasses': 212, 'number_subgroup_classes': 304, 'number_subgroups': 2998, 'old_label': None, 'order': 960, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 111], [3, 8], [4, 128], [5, 4], [6, 168], [8, 144], [10, 124], [12, 16], [15, 32], [20, 32], [30, 32], [40, 96], [60, 64]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 4], 'outer_gen_pows': [36, 0, 0], 'outer_gens': [[517, 518, 12, 24, 48], [1, 494, 492, 504, 528], [1, 2, 12, 24, 624]], 'outer_group': '16.10', 'outer_hash': 10, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 8, 'outer_perms': [120, 5040, 9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_4', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 21, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 4], [3, 8], [4, 4], [8, 4], [12, 4], [16, 1], [32, 1]], 'representations': {'PC': {'code': 7567724842510842343758361247880714060760543888854110503799923283723267, 'gens': [1, 2, 4, 5, 6], 'pres': [8, -2, -2, -3, -2, 2, 2, -2, -5, 161, 41, 194, 23043, 4043, 1939, 1307, 30244, 14892, 7580, 14405, 4909, 741, 2141, 1093, 141, 24206, 166, 24591]}, 'Perm': {'d': 21, 'gens': [2453238961559084167, 5353870025778704640, 2920612713734137680, 524603286799920, 37, 7946945279455523040, 10508879928940122960, 12417236794610364240]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 12, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '\\GL(2,3):D_{10}', 'transitive_degree': 80, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 3, 2, 2], 'aut_gens': [[2, 4, 16, 7], [5, 3, 23, 7], [5, 4, 7, 23], [2, 8, 16, 7], [21, 19, 16, 7]], 'aut_group': '24.12', 'aut_hash': 12, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 24, 'aut_permdeg': 4, 'aut_perms': [2, 4, 16, 7], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [2, 6, 1, 1], [3, 8, 1, 1], [4, 6, 1, 1]], 'aut_supersolvable': False, 'aut_tex': 'S_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '24.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 24, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_4', 'cc_stats': [[1, 1, 1], [2, 3, 1], [2, 6, 1], [3, 8, 1], [4, 6, 1]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '24.12', 'commutator_count': 1, 'commutator_label': '12.3', 'complements_known': True, 'complete': True, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 12, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [2, 6, 1, 1], [3, 8, 1, 1], [4, 6, 1, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 9, 'exponent': 12, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[3, 1, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '24.12', 'hash': 12, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 3, 2, 2], 'inner_gens': [[2, 3, 7, 16], [5, 4, 7, 23], [21, 19, 16, 7], [21, 15, 16, 7]], 'inner_hash': 12, 'inner_nilpotent': False, 'inner_order': 24, 'inner_split': True, 'inner_tex': 'S_4', 'inner_used': [1, 2, 3], 'irrC_degree': 3, 'irrQ_degree': 3, 'irrQ_dim': 3, 'irrR_degree': 3, 'irrep_stats': [[1, 2], [2, 1], [3, 2]], 'label': '24.12', 'linC_count': 2, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 2, 'linQ_dim': 3, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'S4', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 5, 'number_divisions': 5, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 11, 'number_subgroup_classes': 11, 'number_subgroups': 30, 'old_label': None, 'order': 24, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 9], [3, 8], [4, 6]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 4, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [3, 2]], 'representations': {'PC': {'code': 8281755524, 'gens': [1, 2, 3, 4], 'pres': [4, -2, -3, -2, 2, 33, 146, 114, 99, 55]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [10644, 10320]}, 'Lie': [{'d': 2, 'q': 3, 'gens': [29, 23], 'family': 'PGL'}, {'d': 3, 'q': 3, 'gens': [1699, 13205], 'family': 'SO'}, {'d': 3, 'q': 3, 'gens': [1699, 13205], 'family': 'PSO'}, {'d': 3, 'q': 3, 'gens': [1557, 1699, 13205], 'family': 'PGO'}, {'d': 2, 'q': 3, 'gens': [362, 4377], 'family': 'PGU'}, {'d': 3, 'q': 3, 'gens': [1699, 13205], 'family': 'CSO'}, {'d': 2, 'q': 3, 'gens': [29, 23], 'family': 'PGammaL'}, {'d': 2, 'q': 3, 'gens': [362, 4377], 'family': 'PGammaU'}, {'d': 2, 'q': 2, 'gens': [266, 337, 275], 'family': 'AGL'}, {'d': 2, 'q': 2, 'gens': [266, 337, 275], 'family': 'ASL'}, {'d': 1, 'q': 4, 'gens': [3, 7, 1], 'family': 'AGammaL'}, {'d': 2, 'q': 2, 'gens': [7, 2, 5], 'family': 'AGammaL'}, {'d': 2, 'q': 2, 'gens': [7, 2, 5], 'family': 'ASigmaL'}], 'GLFp': {'d': 3, 'p': 2, 'gens': [465, 458, 314, 124]}, 'Perm': {'d': 4, 'gens': [2, 4, 16, 7]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'S_4', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}